Acoustic-to-Articulatory Inversion Mapping Based on Latent Trajectory Gaussian Mixture Model

نویسندگان

  • Patrick Lumban Tobing
  • Tomoki Toda
  • Hirokazu Kameoka
  • Satoshi Nakamura
چکیده

A maximum likelihood parameter trajectory estimation based on a Gaussian mixture model (GMM) has been successfully implemented for acoustic-to-articulatory inversion mapping. In the conventional method, GMM parameters are optimized by maximizing a likelihood function for joint static and dynamic features of acoustic-articulatory data, and then, the articulatory parameter trajectories are estimated for given the acoustic data by maximizing a likelihood function for only the static features, imposing a constraint between static and dynamic features to consider the inter-frame correlation. Due to the inconsistency of the training and mapping criterion, the trained GMM is not optimum for the mapping process. This inconsistency problem is addressed within a trajectory training framework, but it becomes more difficult to optimize some parameters, e.g., covariance matrices and mixture component sequences. In this paper, we propose an inversion mapping method based on a latent trajectory GMM (LT-GMM) as yet another way to overcome the inconsistency issue. The proposed method makes it possible to use a well-formulated algorithm, such as EM algorithm, to optimize the LT-GMM parameters, which is not feasible in the traditional trajectory training. Experimental results demonstrate that the proposed method yields higher accuracy in the inversion mapping compared to the conventional GMM-based method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical mapping between articulatory movements and acoustic spectrum using a Gaussian mixture model

In this paper, we describe a statistical approach to both an articulatory-to-acoustic mapping and an acoustic-to-articulatory inversion mapping without using phonetic information. The joint probability density of an articulatory parameter and an acoustic parameter is modeled using a Gaussian mixture model (GMM) based on a parallel acoustic-articulatory speech database. We apply the GMM-based ma...

متن کامل

Speaker adaptation of an acoustic-to-articulatory inversion model using cascaded Gaussian mixture regressions

The article presents a method for adapting a GMM-based acoustic-articulatory inversion model trained on a reference speaker to another speaker. The goal is to estimate the articulatory trajectories in the geometrical space of a reference speaker from the speech audio signal of another speaker. This method is developed in the context of a system of visual biofeedback, aimed at pronunciation trai...

متن کامل

Speaker adaptation of an acoustic-articulatory inversion model using cascaded Gaussian mixture regressions

The article presents a method for adapting a GMM-based acoustic-articulatory inversion model trained on a reference speaker to another speaker. The goal is to estimate the articulatory trajectories in the geometrical space of a reference speaker from the speech audio signal of another speaker. This method is developed in the context of a system of visual biofeedback, aimed at pronunciation trai...

متن کامل

On smoothing articulatory trajectories obtained from Gaussian mixture model based acoustic-to-articulatory inversion.

It is well-known that the performance of acoustic-to-articulatory inversion improves by smoothing the articulatory trajectories estimated using Gaussian mixture model (GMM) mapping (denoted by GMM + Smoothing). GMM + Smoothing also provides similar performance with GMM mapping using dynamic features, which integrates smoothing directly in the mapping criterion. Due to the separation between smo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016